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A•STFACT

We present a new method for attacking the radome problm. It improves

the- standard radome analyses in the two aspects: the description of the

incident field, and the curvature of the radone surface as. explained below.

(a) The radome is normally situated in the near-field zone of the antenna,

which may be a horn, a slot, or an array. Taking Into consideration the

finite antenna size, we approximately replace it by an array of discrete

point sources, each of which radiates a spheric:. wave. This- approximation

is different from that used in conventional techtiques in which the

incident field from the antenna is approximately represented by a spectrum

of plane waves, instead o-! spherical wave:s. (b) In calculating

the wave transmission through the radome, the curvature of the radome is

invaziably ignored in conventional analyses. Our approach, however,

does treaf the radome as a curved surface b) .-alculating the transmission

of a spherical wave via ray techniques.

In this part of the report, only the point source situated inside

the rad.me is studied. Extensive numerical results show that the curvature

of the radome may significantly modify the field tranawaited through the

radome. This .modif ication cannot be accounted for by conventional

radome analyses. In the second part of the report, we will consider the

superpos-t1ion of point sources which simulates arrays or aperture antennas

inside rh•• radosm.

* ,iiiI

......... m J



TABLE OF C 0 N E"NS

Page

1. INTRODUCTION . 1 . .

II. DESCRIPTION OF PROBLEM . 6

III. GEOMETRICAL OPTICS F'IELD . . . 8

A. Method of.Solution ......... . . 8

B. Details of the Calculation. .. .. ............. ............ 12I
C. Final Solution .. .. .. .................................... 24

TV. PAR rIELD .. .. ...................................... ......... 27

A. Direct Ray Method .. .. .................................... 27
B. Fourier Transform Method .. .. ...................... .. ....29

V., SPECIAL CASES .. ....... .. .....................................34

A.* No Radomua.. .. ...................................... ..... 34
B. Dielectric Slab Radome.. .. ..............................34
C. Spherical Shell Radone.. ...... ... ... .. .. .. .. .35

VI. NUMERICLLRESULTS OF RADOME .. .. ........ .. .. .. .. .. 40

REFERE]CSM. .. ............. ..... ... ................ 66

APPENDIX A: DIVERGENCE FACTOR FOR A DIELECTRIC SLAB RADOHE *'67

VII. DISTRIBUTION LIST .. .... .. .............................. ..... 71

v

WA. .



LIST OF FIGURES

Figure Page

1. Antenna A and radome Z ............... ........... 2

2. Two choices of incident directions: Al and PI .... ....... 2

3. An aperture antenna A inside a radome is approximaateo
by an array B. Each point source in array B radiate.;
a spherical wave............

4. Transmission through a dielectric shell due to incdi;iice
from a point source at P0 "5 . . . . . . . . . . . . . . . . . .

5. Coordinate systems for refraction at surface E 1 " 9

6. Coordinate systems for refraction at surface E. ...... 9

7, Direct ray method to calculate field on P3 which is

on an infinitely large sphere centered at P0  . . . . . . . . . 23

8. Direct ray method fails to calculate the far field at P . 28

9. Calculation of far field by Fourier transform of the
field over plane Z3 . .. . . . . . . . . . . . . .. .. . . . . . .  .. . .. . 30

10. Dielectric slab radome ...... ............. ......... 30

11. Variation of divergence factor with refractive index
for a siab radome ................................ .. 36

12. Normal incidence onea spherical shell radoe..... .. ..... 37

13. Transmitted field E transmitted through a spherical shell
a-

normalized.by v which is that through a dielectric slab.. 39

14. Spherical shail radon. ........... ............ ... 43

15. E-plane radiation pattern through radon A
2.r 2 d - 0/2). . . . . .... ........ 44

16. E-plane radiation pattearn throuqh radome A
(e = 2.5, d - XO/2) ......... ................... ... 45

17. E-plane radiation pattern through radome B
(Cr -2.5, d - A0/4)..... . ................. 46

vii

I- m ml ,~~-



Figure Page

18. E-plane radiation pattern through radome B
(Cr " 2.5, d - A0 /4) ........... .................... 47

19. E-plane radiation pattern through radome C
(Er m 5.0, d -X 0 /2). ........ ..................... ... 48

20. E-plane radiation pattern through radome C
(Cr = 5.0, d - X 0 /2).. .............. .......... .. 49

21. E-plane radiation pattern through radome D
(C 5.0, d - A0 /4) .............. ..................... 50

22. E-plane radiation pattern through radome D
(Cr = 5.0, d - X 0 /4) ......... .................... ... 51

23. Paraboloidal radomes E and H described by
Eqs. 6.5 and 6.6 ..... ........................... 52

24. Paraboloidal radomes F and G described by
Eqs. 6.5 and 6.7 ......... . .......... .............. 54

25. E-plane radiation pattern through radome E
(Cr 2.5, d - X0 /2) ..... .................... ... 55

26. E-plane radiation pattern through radome E
(e = 2.5, d - A..2) .................. ..................... 56

27. E-plane radiation pattern through radome F
(Cr - 2.5, d X0 /2). . ...................... 57

28. E-plane rad'-ation pattern through radome F

2.5, d - o/2) ....... .................. . 58

29. Expanded views of the paraboloids of Figures 23 and 24
around the tips .......... ...................... ... 59

30. Variation of axial field strength with R2, for a paraboloid
with the source on z-sax.s . . ........ ....... 61

31. E-plane radiation pattern through radome G
(Cr R2.5, d - 0/4). ... ................. 62

32. E-plane radiation pattern through radome G
(cr -2.5, d - A /4) ................. ..... . . . . 63

33. E-plane radiation pattern through radome H
(cr - 5.0, d - AO0/ 2 ). , ... . . . ...... ....... 64

34. E-plane radiation pattern through radome H
(Cr 55.0, d X X0 2). . .. . ................ 65

viii.



I• T.NTRODUCTION

Many practical antennas are covered.by radomes, whose effects on

the antenna radiation are of considerable importance, especially. in

tcday's high-performance radar/communication systems. In the past

quarter of a century, several standard analyses have beer devised for

analyzing radome effects. None of. them is exact, and improvements are

always needed. The present report described an. effort in this direction.

A typical radome problem may oe stated as follows. Let an aperture

antenna A, for instance a horn, a slot, or a coaformal array, radiate a

known field i(r) in free space (see Figure 1). A protective shield or

radoma Z is placed around antenna A. The problem is to determine the

radiation field t for the composite structure, i.e., the antenna A

radiating in the presence of the radome. This problem has received a great

deal of attention from many researchers during the last two decades, and a

so-called "best available" method for attacking this problem appears to

have emerged. A brief description of this method is given below.

(a) In the vicinity of £, the incident field ti is not a ray field

(locally plane-wave). To circumvent this difficulty, let be resolved

into a spectrum of plane waves, namely,

~ fdk~ fdk ~() ik~r(11

- ( Jdx f dy () (1.2)

Here, - (k ,ky,kz) is the direction of propagation of the plane-wave

spectral component. The spectral wave number in the z-direction,

S1
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(a) free space (b) radome environMene

Figure 1. Antenna A and radome E.

'1igure 2. Two choices of incident directions: Al and Pl.
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z x y

may be real (homogenous plane-wave) or imaginary (inhomogenous -lane-

wave). The weighting factor W(k) is the amplitude of the plane-wave

spectral component propagating in the direction k.

(b) For each plane-wave component, a transmission coefficient matrix

for a flat dielectric slab can be obtained frorm any standard text on

ED theory. The subscript zero of T0 indicates that it is derived from the

assumption of & plane-wave incident field. The transmitted field •(2) at

point 2 on the outer surface of E is calculated from the formula

(c) Once E (2) is known for all points on the outer surface of Z,

equivalent surface urrent sources (J(2), K(2)) can be determined. The

convolution of the source with the Green's function gives the desired

radiation field which is expressible as

,(q) 1 f + 2 da . (1.5)

outer Z

The approach described above is of course theoretically, sound. However,

its faithful executicn is impractical because of the extremely laborious,

numerical integrations in (1.4) and (1.5). In the well-quoted analyses

by Paris (11 and Wu -and &,dduck (2], the numeriacal integration in (1.4)

is avoided by approximating the transmitted field at point 2 by

b rd •td () (t 0 th0e n ica0 (1.6a)

-where the incident direction is determined by

.3



II

k0 4 scrual ray direction Al, or the direction P1 of the

Poynting vector of Hi (Figure 2). (C.b)

Note that the approximation in (1.6) is to describe P by a plane wave.

Since the radome is in the near zone of the antenna, this plane wave

approximation for ' described in [11, (2] does not seem to be a good one..

In the present report, we approach the radoce problem from a different

viewpoint.' Instead of decomposing the incid at field Pi into a plane wave

spectrum, we approximate the finiti-sized antenna A in Figure 3a by an

array B in Figure 3b. EAch eleuent in array B radiates a spherical wave.

Those spherical wave constituents, transmitting through' the radome E, are

superimposed to give rise to the desired rad4,,tion field E in tne far zone.

Thus, the key step in the present approach is to determine the transmission

of a spherical vave through a curved dielectric sh6ll.

V• shall apply geometrical optics to solve the transmission thiough

the curved radome. Results are presented in this part (Part I). In Part

'II of this report, we shall discuss how we superimpose point sources to

approximate a f ite-sized antenna in a practical radome problem.

4



A

Figure 3. An aperture antenna A iu'a radota. is approximated
by an array B. Each poir.c -urce in array B rafiates
a spherical wave.

'2
P3

rZ3

figure 4. Transalssion th.?oulh a dielecteIc shell due, to incidence
f rou a point source atP



• II. DZSCRLPTL'O• OF PROBLLM

The geometry of the radome problem under consideration is sketched

in Figure 4. A point source at P0 produces a spherical wave which goesI •through a curved dielectric shell with nonuniform thickness. Ray

techniques are used to determine the field at point P3 on a given surfaceI3
outside the shell. First, let us describe the various elements involved

in the problem.

Coordinate Systers and Time Convention. The main coordinate system

is tin rectangular system (xyz), whose origin is chosen at the source

point Po and the z-coordinate is in the direction of the beam maximum

of the antenna. Other coordinate systems at points PI. P2 and P3 along

the ray are defined latur. The field is time-harmonic with the time

I factor .xp(+pt) which is suppressed throughout.

Source. We assume that thu source has a well-defined "phase center"

at point PO9 the or1i#.n of the coordinate system (xy,z), and radiates*i ''
a spherical wave denoted by (Ei, gi ). If the antenna is an arzay of point

sources, it is necessary to consider each element in the array separately

and superiupose their final fieldi at the observation points.

Dielectric radoee. The radome is a dielectric shell with nonuniform

thickness of relative dielectric constant or refraction index

n V .e , and is bounded by the inner and ourter surfaces Z and E
1 2

respectively. The inner surface Z (near the*source) is described by

the equation:

. ft(x,y) , for a1 < x < b1 and cI < y <d 1  . (2.1)

The outer surfaco E 2 is given by the equation:

6



z f 2 (x,) , for a2 < x < b2 and c2 <y < d2  . (2.2)

It is not necessary to know the analytical form of the functions f (%,y)

and f 2 (x,y). In computation, only a set of discrete data points

(xyujal} with n - 1,2,...,N is needed for the description of f(fl or f,).

These points are fitted by a cubic spline which gives automatically first

and second partial derivatives of f, i.e., 3f/lx, Uf/ay, a 2f/a2 2 f/3xly,

2 2and 2 f/ay . There are two requireaents for the cubic-spline fit:

(i) the data points can be distributed over a random grid, but they must

be dense enough to describo- the fine details of Z(£E or £2) ; (ii) the

domain of the data points (a < x-< b and c < y < d) must be somewhat

greater than the area of £ in which the ivcldent ray is expected to

intersect the radome.

Observation points. Observation point P is located on a prespecified3
surface £Z3 which can be either one of the following two types:

(i) Spherical £3 with center at PO and an infinitely iarle radius.

In thin case,. P3 is in the far f'eLd, and the field at P3

calculated by the ray technique is the final result.

(ii) Planar 3 which is just outside the radome and normal to the

s-axis. In this' case, we have to integrate the field on £E to
3

obtain the far field.

In later calculations, we use mostly vtro spherical I3 in (i).

7



III. GFZ.ETRICAL OPTICS FIELD

For a given incident field (& ,HP) generated by the source at poiat

P0 (Fig. 4), the asymptotic solution of the field at point P3 is deter-

mined using geometrical optics (31, (4]. The method of solution is

described below.

A. Ika-hod of Solution

Cousider a ray in direction (e,#) extending from the source point P0

to the point P1 on £i" The source region (Region qs homogeneous and

isotropic; hence., the ray 1i a straight line along the unit vector 'Ol *

First, the dissance ro 1 is found and the coordinates of point P are

determined. Then thi unit vector N1 normal to the surface Z at point P

is found (Figure 5). The plane of vectors rOl and Ni establishes the

incident plana. ýThe angle between these two vectors is the incident

i tangle a.1. Using Snell's law, the refraction angle a 1 is obtained, which

establishes the direction of the transnitted wave, r 1 2 , in legion II

(dielecitrio). The ray in Region I is a straight line clong the unit

i ,ector r 1 2 . Throe coordinate systems yr. 1 ). (u. vN.),j and

At tA~

(,,.yl~,,1), with coon origin at point P1. are then established.

They belong to, the incident ray, the surface E1 , and the transmitted

ray, respectively.

The Incident field (•.')is split into a normly polarized fiels

.P, (E-#ector norme to th, incident plane at P)and a parallel

polarized field (ip (i ). The tranwintted field at point P Is "obtained

asfollows:

Entu n fin Y A" tl, , r12, ,

*

. i , " ", '



Ai At A

Y I VIS~~ .~-'-

-F- z

II

Figure 6. Coordi~nat~e systems for-refraction at surface r.L
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Elp p
I Hi r12 (.I

in which t aand t are transmission coefficients for the normal and

parallel polarizPA fields, respectively,

2Y cos CS cos at n 2 1 1,•0 - 1
1 i; Y cos a Ccs a*

t t
-p 2 Z Cos ai 1 cCs a 11• 1 + V "p1 ... Co "& U Cos -a I

1 Z0 cos 0 cos1 1

"12o- _ 4 " •e •

~~~0 ~ 1 Z0 *l24Zi/~

Note that the subscript 1, in Fn for example, signifier the field

e¢aluated at point 1.

The' transmitted field at P1 Z.s incident on Z2 at point P2 " Coordinates

of this point zan be found from the knowledge of the coordinates of point,

Pland the transwitted ray direction rl 2 . The field values, in going from

P to P,,, undergo stme change which is dependent on the divergence of the

ray. Thus, we have

( e 12' • •it (3.3)

in which k * nko .--the wave na~ber in the dielectric and D¥12 Is the

divergence, factor for the pencil of rays travelling from P1 to P in the

dielectric. 'It is given in (3), as

(1+ U -1/2, + 1I r3-1/2
D12 (1 ql r12) 2 1 3.4)

'10
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in which q1  and qI, are the principal curvatures (inverse cz. the radii

cf curvature) for the r.y p-fncil in Region Il. They are found from the

curvature matrix cf the transmitted ray at point P , as shown in

Subsection B. The matrix itself is found from a formula involving the

curvature matrix of the incident tay and that of the surfa,-e 11 at point

P1V The curvature matrii of the transmitted ray pencil at point P1 is

also used, to find the curvature matrix of the ray at point P2 incident

upon O$e s-.,rface E2

Having the field incident upon. r2 at point P2- the ray direction r12,

and its curvature matrix, we can proceed, in a manner similar to the

transmission through ZI' to find the field transmitted through E2 at P2

(Figure 6). Thus, a unit vector N29 normal to i2-s obtained, and

together with r 1 2 defines the incidence plane at point P The incidence

angle a22 (Cos a2 = N2 * r 1 2 ) is then calculated. Again, Snrl1's law is

tinvoked to find the refraction angle a at P2. Thi3 angle specifies the

ray diredtion r,3 in Region III (outside the radome). Three coordinate

systems (x,,Y 2 ,r 1 2 ), (u 29 v, 2 ) and 2x 2,y2 r23  with comwa origin at

point P are then introduced.2

The field (2,) inident 2upon E at P Is resolved into parallel

and normally polarized fields, from which the transmitted fields are found

as follows:

E 2t 2  , H• 23 2

ton pin tp l ,tn, (3.5
H2  t 2 K2  , r -Z3.

11

S.... + .. .. ,. ~ . ........................... ......... • -.... ,
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in whi~ch

t

n 2 1 Co M2
2 1+-v, n2 . i

UZ Cos a2

t

-p 2+v V 2  Co. (3.6)
2 j2 p 2 Cos a2

The field at observation point P is then found from the transmitted field
3

at P , such that,

-jk r2

.3DF) e 2 (3.7a)

in which

III -1/2 (1 I -1 /2 II.b/=2 3  +q, r23  (+q 2  2 n3.7b)

and q 1  aud q2 are the principal curvatures of the ray pencil in

Region III. They are obtained from the curvature matrix of the

transmitted ray at point P2* This matrix is obtained from a formula

already mentioned in connection with transmission through V For

a typical factor in Eq~s. (3.4) and MS), the folio-ing 'square root

convention is used:

r .If1, iff is real

Df23=( lr + q q 23 (3.78)

f -//i7jj -1+''ff' if f is imaginary(38

It should be mentioned here that we have ignored multiple reflections

in the dielectric radon* throughout our analysis.

B. Details of the Calculation

Coordinates of the first refraction point, P i For a given ray leaving

the source point P0, the coordinates of the point Pto intersection of the

12



rectilinear ray with the interface El. are given by

xI - r0 1 sin 8 cost,

2 2 2./2
Yl r 0 1 sin a sin ; r01  (X+ 1 Y+ ) ' (3.9)

zI ar 01 'os O

in which 8 and 0 specify the ray direction in the spherical coordinate

system with origin at P Since point P is on the surface Z (z f (xy)),

we can write

r 01 cos 8 fl(r0 1 sin 6 cos * , ro1 sin 8 sin 0) . (3.10)

For given 8 .and 0, this nonlinear equation must be so red for r 0 1  Once

to1 is known, (xl,ylzl) are found from (3.9) and the'unit vector r 0 1 is

" x 1x + Y1 y + z1z
o 1 r 0 1

Coordinate systems at point P The unit vector Ni, normal to the

surface Z at point Pit is

N1 ivgl(x,y,Z)i , g1 (IY,) - z - f.(x,y) , - + - 57 3
SP1

or NJ ( xx fly (3.12)

in which

af aff Ix a ax f ly' 1 : A1- 1 + f l+'f )]': (3 .13)

(Notice that the direction of0 1 is che'r, pointing away from the source.)

Vectors r0 1 and N1 specify the inc'dent plan* at point P.. The coordinate

01 1

13
........- ....-...... .-



t t

sA (s N_ y jyl - r0-). anl'd (u1,v1 ,N 1 at point 1' for the
systeins (x 1 ,Y1 ,rol), 1xl l) 'l )a

incident ray, the transmitted ray and the surface El, respectively, are

chosen such that all three have one common coordinate perpendicular to the.

Lniet lnthti, 1  4 4 (Fig. 5). Notice thtC, in general,

the coordinate systems could be chosen arbitrarily. However, the choice

made here offers some simplification in the calculation of curvature

matrices, as is shown later. Thus,

^t N1 r01 1v1  Y " Y, a - [ +- z f )T.� + (x + z f )y (3.14)[IN 1 xr 01i L, 1ly 1 1l

+ (xlfly - Yiflx)Z]

in which zl, yI, and zl are given in (3.9) and

2lly 2 2] 1/2

L (Yl + + (xl + zlflx) 2 + (xlfly - y1 fl) . (3.15)

S 44
Thea u1 and x- are specified as

1 2 ~ +ri +f 2 f +,2

Ill "1.x 1  A1L1 LL 1  l+ y' + fl,,(z3 -+ fly)] 2 + fYl(l +( fz)

2 2+ fly(zI 1 flx)]y + [Yf ly + X1flx +z f1 )]z} (3.16)

and

^i ^ 1 + 2 2
1 y o r O, 7 - y{z f +f) .(y +, 2)iK + (y1(z1 -y, x f

+f N2+ z22) My [z (yf + f ) + (X 2+ 2ZI (3.17)

in which'A, and L, are given in (3.13) and (3.15), respectively.

Notice that. both uI and are in the plane of incidence.

14



In order to specify the coordin,:te system for the transmit-ed ray at

point PI. the transmission direction r 1 2 is first obtained. To this end,

the incidem-e and refraction angles need to be found. Incidence angle

aI is sech that

i A A l-Xfx-Yfy

Cos ct N1 N 1 r0 1  LO1 (318)

Snell's •aw is then applied, to find the refraction or transmission angle
t

a such that

sin act n-I sin a' -'n (1 2 co& I . (3.19)

Now r 1 2 , like r0 1 , is in the plane cf incidence and can be written as

r 1 2 -" (r 1 2  u 1)u" 1 + (r 1 2 " N " sin az "1i + Cosc•a 1 . (3.20)

Notice that due to the particular choice of v 1 and ul, as given in
(3-14) and (3-16), a and ait are always less-than r/2; hence, their sines

and cosines are always positive real numbers (for lossless dielectric) and

At

no sign ambiguity exists. Once r 1 2 and y1 are properly defined (in (3.14)
12t

and (3.20)), the third coordinate direction for the transmitted ray x; i

found from

X y" r12 '1 (i a 11 + Cos ua 1. 1 u1 sin, .Ct 1 "12x v x (sni 1 C 5 1  OciU - n

(3.21)
Coordinates of second refraction point, P2: Having the

coordinates of point P1 (from 3-9) and (3-10)),and the ray direction

vector in the dielectric r 1 2, the coordinates of point P2 can be found.

Thus
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r12 x12 + + '12' r 1 2 (a 2 x + 82y + y2z) r 12r12

x12 9 r2 xr 12 x1 +CrI 12

.12 " 82 r 1 2  Y2 Yl + $2r12

z + z 2r2 (3.22)

Since a 2 , 82 and Y2 (direction cosines.of r 1 2 ) are known, the' coordinates

of point P2 are specified in terms of r 1 2 only. On the other hand, the

coordinates of point P2 satisfy the equation of the surface Z2 (zG f2(x,y)).

Hence,

(zi + y2 r 1 2) f 2 (x1 + a2r12 - yl, + 22r 1 2 ) . (3.23)

This nonlinear equation can be numericallv solved for r12 and the result

subptituted into (3.22) to calculate x2, y2 and z2.

Coordinate systems at point P2: Similar to the case of point PI' we'

set up the coordinate systems (iz i 2 .; an t t or
(x 2 ,y 2,r 1 2 ), (u 2 ,v 2 ,N 2 ) and (for, 2 3

the incident ray, the surface Z2 ' and the transmitted ray, respectively,

with comwmn origin at P2 (Figure 6). Skipping the details, the results are

given below:

N 2  2 -(Z -f~x-f 27;) ,(3.24)

in which

. l+f21 2 1/ 2 f If1 anf 2f
2  (f 2 xf 2 y 2, 2 a ydf2 2 ,

"16



"2 N r 1 2 [-(Y2 + zl'f2y)x + (x12 + zilf X)Y

v2 "Y2 "2 " IN2  1 rl 2 ' [Zt

+ (x1 2 f2 y - Y12 f2x) z] (3.25)

in which xl2, Y1 2 ' and are given in (3.22) and

ol 
- 2 1/2.L2 "[(Yl + z 2 f2y)2 + (x12 + zl2f2x) y - 2f2x]

Also

, 4 [x212 1 + f2y) + f 2 (ZY2 - Y 2 f 2y)x I. 712(1+ f2

2x 1f2 fY2 (1 + lz}

+2y (12 - x1 2 f 2x)]y + (Yl 2 f2y + xf22x + Zl2(f2x + fz (3.26)

1 C - )+ . ( 2  2
2 Y2 r 1 2  -2 12 Y2 2y + r 12 + Zl 2 )]x + [Y1 2 (z 1 2  x1212.)

2 2 2 2
+ f2y(z12 + z1 2 )]7- [z 1 2 (Y1 2 f 2 y +'x 1 2 f 2 x) + (xl2 + y 1 )lz} (3.27)

i 12 12 - 2x - Y1 2f 2x (3.28fos 2 N 2  1r12  A 2ri2

in a2i n(1 - cos2 a2) (3.29)

Jt tr s in a u + Cos a N2 (3.30)
23 5jU 2  2 ~C 2

t t t t2 Y2 &2 22

Notice that as i the case of point PI. all 3ine and cosine values for
I tt

a2 an~d a 2 are po itive real. However, sin a can become equal or larger

than unity, in ich case total reflection occurs and surface waves appear.

In the present w~rk all such cases will be discarded.

17



Coordinates of the observation point P3. Ouce r 2 3 and the coordinates

of point P2 are known, the coordinates of P3V the point of incersection of tbe

ray and observation surface Z3 (z - zo, z 0 a constant); are easily obtalned.

-r (aX ^+Yz
•23 = 23( 3x +3Y + 3z =23 23

x 23 L •3 r23 x 3 - x2 + a 3 r23

Y23 3 3r 23 73 Y2 + a 3 r23

z23 3 7323 z3 - 2 3 323 (.2

but or the plane surface Z3* z3 " 2 + y3 r 2 3  ZO' which gives

r2 0 23 (3.33)
r23 Y32

Since a, V a3 and Y3 are knowu, substituting r 23 from (3.33) into (3.32)

yields the values of Xy Y3 and z3

Curvature Matrix of the incident field at P Since the source
V

produces a spherical, field, its curvature matrix in any orthonormal

coordinate system at point P (here ;1

propagation direction 0o1 is given as [3], (4],

0 1.
0 1/r ro1

.0!

in which ro01 is the radius of the spherical wavefront at point Pi. and U

denotes a unit matrix.

18



Curvature matrix of the surface V It can be easiZy shown that .the

derivatives of vector r 0 rI (starting at the origin P and ending at

a point such as P on El) with respect to two independent parameters x
I I

and yl on the surface Z, as giren below,

-9-

1 lX + -1

-r+ X + -- y+- Z - y+ f z (3.35)
ly ;yl ;Y1  aY,

3fl l f.
with f"(x_'. 1 ) '. -" f " •y

lie in the tangent plane to the surface at point P V It can also be

easily shown that the derivatives of the unit vector 11 normai to E1 at

Pi. with respect to x1 and yi, also lie in the samw tangent plane and are

given as

"z" ~~ ~ ~ ~ f ix""l fz (.fx f_ flyy. -z/fzt- - l•WXc.
N ix -; - , - xx lly

1N -f f
N1 - -x1  (-flx-z izyy +x N 3.6

ay 2 1

in which N1 is given in (3.12) as M4 -(in. -f z f Y)1 1lix, ly

The latter two vectors can be written iv terms of the previous two

Vectors defined in (3.35), such that

Qr ix r ly

19
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The matrix 0 is the curvature matrix of the surface in coordinates
rr

rx ly
r and r and can be shown ([31, (41) to be

Ix ly

SIlx x Nlx r ly Il rlx rix rly-

.1 .".
r Ixr y N *y r lx Nl *rl r *r r *y r .lily~~~ 1Y x v 1 l y y

2 G - F fE feF1 I ii S 1, 1 11i31

in which

1  1 2  f 1f f G -14+f 2
E 1 1 flx 1 l fly 1 ly

f.2 XX.A .-f1l " " -A1  1 A1  S1 A 1  "

The curvature matrix of the surface E at point P1. defined in the

coordinate system (u1 ,v 1 ), is obtained from the one given in (3.37) as

follows:
£I •:I

Q. .- (A,)-' Q . 1  (3.38)
, 1,,V 1 rlxrly

in which matrix A, is given as:

r x U1 rx 11 J

k1[. r lY v j
Lry u rly •v

20120 .-



Curvatare matrix of the transmltted field at PV 'oSw with the incident

ray curvature matrix and the surface curvature matrix known, we proceed to

find the transmitted ray curvature matrix QO. It is obtained from the

following equation [4]

t •T t t i91 T i A. 1 t

kI) • Q a k Q(e )1Q ; +h1 Q , hi k coa k0 cos aC . (3.39)

L t (uI) "i tiiere Q , Q1 , and Q are defir.ed in Cuiv (x ,yi) and (x yl) coordinate

£ t

systems, respectively. 91 and et are matrices which relate the incident

and transmitted ray coordinates to the coordinates of the surface El and

fnr these coordinate systems, ,as defined in Figs. 5 and 6, they are given

as:

i1 - ' l S

!I ul "J. i 10
x u t jCos CLt

e i YoiJ

"Ot 'l *i~ v• i 1 •
t to

--- ,(I40

Yl • ul ;.* iLA

Notice that due to the particular choice of coordinate system the transpose,

eT, and the iaverse, e 0 , of these matrices are easily found., Then from

(3.39)
t -1 1 i ii .t. 1 0  •i) L1 t-

Q1 (ot) [n GlQlG1 + (cos a1 a Cos 0() (9)- (3.41)

Again it should be noted that this Ql is valid In U1, yl.r12) coordinate

system.
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Divergence factor in the dielectric. At this point we can find DF12,

the divergence factor for the ray pencil in going from Woint P1 to point

P29 ag ±iven in (3,4) and repeated here for convenience (see also, (3.8)):

DF12- (1 + q : 1 2 ) -1/2 U + Q2r12 /

in which q, and q2 are the principal curvatures (inverse of the radii of

curvature) for the ray pencil in the dielectric. (Region II) and are found

from the following equation

t Ill q12

q -tr ce (Q 1)q + det (Q ) -0 Qq 2

q~l qq2 2J

or

q2 (qll + q 2 2 )q + (qllq2 2  q 1 2 q2 1 )' 0 (3.42)

12 1/2
ql' q 2  2 2{(qll + q 2 2 ) +-[(q11 + q 2 2 ) -(qllq 2 2 - q1 2 q2 1 )1

Curvature matrix of the ray pencil incident upon E at point P2"

The curvature matrix of the ray pencil, in going from point P? to P

in the dielectric, changes according to the olloving equation (see [3]),

(Q-1 -I + r U(3.43)

or

S7t 
t

However, this matrix is valid in a coordinate system parallel to 1,xl,

with origin at point P2" It is transformed nto the foliowing matrix in
.'i -i.

the (12,y2) coordinate system (belonging to he incident ray at point P2):

22



in which t ^

S B . t i ^t
1 X 2 yl *2

Curvature mtrix of thb surface E2, curvature matrix of the ray .pncil

transmitted into Region III at point P2' and divergence factor for the ray

field in going Zrou point P2 to P3. Following the steps similar to those

for point Pl, and skipping the details, we arrive at the formulas given

below.

r 2 1 2G2 - f212 f[:E:2 : :2F
r,2 ,r 2y A2 Lf2 G2 -g2 F2 g2 E2 f ?'21

in which

2 +f2
~2 2X 2y

K2  + f 2 2 A 22x • • , .2 G 'x2 2 -n.1+,. y

-•2 2. i 2•.

Q2. 2 (A2 )-1 Q. 2 A2 (3.46).
u~v2u2 &IV 2 r 2z' r2y

in which

23
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rx u2 2x V2 1

L2y .u2 r 2y " 2 .

and finally

t t - G t - 2 1-Q (0 [n e + (Cos a2 CI- 2Q (et)- (3.47)2 •t ýt 2 1 1U 
9ix 29Y2 'x i29Y2u22

"where

Csa101 Co CL t (0B
o 2 e 2

e t (3.47a)82 0 1 82 0

Divergence factor DF2 3 for the field in going from P2 to P3 is then given

by (3.7b) and repeated here for convenitrnce as (see also, (3.8))

DF + -1/2 -1/2
DF23 (1 + qlr 2 3 ) + q2 r 3 3 )

in which q, and q2 are solutions to the equation given in. (3.42) with

qll q1 2, qj1 and q2 2 being members of the curvature matrix of the

tranaittcd ray:

' "[ql! -q12]

' 2 "t ^t
I x2'Y2 q21 422[

C. Final Solution

We now summrize the final results obtained so far. The point

source at PL (Figure 4) radiates a spherical wave described by

24



E (r,0,,) - n 0  (P(8,,)8 + Q(8,,)•),

--j k0 r

"0)r- [(P coscos -Q sin)x + (P sncosS + Q cosO)y - P singz]
(3.48a)

H y r x E (3.48b)

where (r,8,4) are spher4cal coordinates with origin at P0" The pattern

functions P(0,0) and Q(0,O) in (4.28) are given. At point P1 (Figure 5),

we decompose the field into two components in the directions of (xlYl). i.e.,

-i ^i. ̂ i .0-i i.i A ii (.9
X 1 , (Zlr1) + (E;i-Yl, - Y0 ror El, (3.49)

where (XYyI) are defined in (3.14) and (3.17). At the observation poiut

S3' we express the field as follous

S3 2 t32y2 2 3 023 x •3 ) (3.50)
A )r

%here (xt,;t) are defined in (3.25) and (3.31). The two components

of 3 in (3.50) are found from the matrix equation

(DF2 )(DF23)e [0-lp~ ai.t !t+2rY2.Yl Jl.Yd3
At"2 12 23 -1 p2,,2i t n n-^i At."i,

OY2 DUF nnit22*l E 17

(3.51a)

or more compactly,

"-Jk 0 (nr 1 2 + r23)
-""(DF) a (3.51b)

'51b
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In (3.51), n Is the refraction index of the dielectric, k0 is the

free-space wave number aad tn, t2, tp are the normal and parallel
1' 1' 2'

transmission coefficients at point P1 and P 2 respectively, as given

in (3.2) and (3.6). The two divergence factors are given in (3.4) and

(3.7b). Their calculations constitute the major effort of the present

solution.
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IV. FAR FIELD

For the radome problem under consideration (Figure 4), we are

generally titerested in the tran3mitted field in the far zone (outside

the radome), namely,

-jkor
0e t

(r1-) [OP (8,1) + ; Qt(etf)] , r - . (4.1)

y

where (r,@,J) are the spherical coordinates with origin at P0 (Figure 4).

From the analysis in Section 3, we have found the field at an observation

poitnt P3 over a surface Z 3* Now, let us consider how tor obtain the far

field I from the field over rZ" There are two ways for doing this.
3.

A. Direct Ray Method.

Referring to Figure 7, we choose the surface E3 to be a sphere

centered at P and with radius r, where r . W* Then point P is already
0 3

in the far zone. The field at P3 is calculated from (3.51). Because-

of the fact that P3 i~s at an infinitely large distance from the soirce,

we can use some approximations for distance r23. As shown in Figure 7,

ray A is the actual ray (which follows the Snell's Law) going from

P0 to P., whereas ray A' is simply a straight line connecting P0 and

P3" When r,. appears in the phase calculation-of a field, we use.

,r 2 3  r 2 .3 r 0 3  r 0 2 ' r r 0 2 ' . (4.2a)

Mhen r23 appears in the amplitude calculation of a field, we use

r 2 3 ,. r (4.2b)

where r is the radius of sphere r 3 and 'is infinitely large. For example,

we uge.(4.2b),in (3.TP), and ob tain
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r! ~ TO P3 ,ON 2

PiP

Figure 78. Direct ray methodfal to calculate hefa field o.P3wihi

.at P3
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DF I (qIIq11 -/ r -o- co (4.3)23 -( 1 II)2 /

This method for calculating the far field ia the simplest. However, it

fails if the observation poi.nt P 3 is a caustic point of the transmitted .

ray f ield. An e-amle is shown in Figure 8. The incident f ield on the

radome is a set of parallel rays from a parabolic reflector. After going

through a dielectric slab radome, the transmitted rays are still parallel.

Hence, q1 II I 0, and DF 3 i (4.3) becomes indeterminaut.'. The

failure of the direct ray method does not occur often in practical

applications. When it does. we m-y use the second method described next.

B. Fourier Transform Method

Instead of going to the far field directly, we first calculate

the field itover a planar su-rf ace Z3 just outside the radosie by the33

ray method (Fig. 9). It may be shown that the far field itin (4.1)

is related to the Fourier transform of i.The exact relation is
I3

stated below.

P (e,) 0 e 2 dooe (f Cos + f sin) (4.4a)2x y

Q (e0.4) - icos 8 +jkbz Ocose (f Cos -.f sin) (4 1.4b)
2o y

where 20 is the distance from P0 to p ldn. r The two functionsf

and f ~are Fourier transforms of the field over E 39 namely,

f (84 ) f fJE x(x~y) e k0( sin 0 cos * + y sin ae sin 0) dxdy (4..5)

y
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Figure 9. Calculation QE far field by Fourier trans~form of the

.. . . .. . .



where (E ,Ey) are tangential components of El s given in (3.50). The

z0 cos P term in (4.4) is the correction made for the transfer of the

field with respect to the origin at C to the field with respect to the

origin at PO (Figure 9).

The integration in (4.3)is over the infinitely large surface of r

It is obvious that in actual computation the integration area Last be

limited to the region where the fields are most significant. To appreciate

* this better, we rewrite it as

f x f A Ex(x',y') ej27(x'u+y'V)dx'd,, (4.6)
y " y y

with

x- X/A 0, Y' I Y/10  u - sin 9 cos v, v - sin e sin * . (4.7)

In effect, che function f (u,v) is the plane-wave spectrum of the fieldx

distribution E x(x',y') on the plane Z3 " This field distribution can be
y

considered to be essentially band-limited, i.e., the energy is

conceutrated in the visible region of the spectrum. Therefore, f has
x

significant values for lul _ 1 and Ivj _< 1.

The integration in (4.5) is best computed'by the use of the Fast

Fourier Transform algorithm. But, for this, a uniform rectangular

samaling grid is zequired. So the first step would be to find the field

on the plane E3 at'a set of uniformly spaced points from the fields given

at a set of randomly spaced (in the general case) points waich are the

result of ray tracing through the radome (fields at points like P3'.
3.

This requires interpolation. We have developed a rather edficie.at linear

interpolation algorithm in the general two-dimensional caee, The grid

constants (distance between two cousecutive points) in the x and y

directions are determined by the Nyquist Sampling. Theorem. Thus,
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f_-f A 0 or &x a (4.8)
Vx2 U 2 21

I'V 11IIo
f 0 for Jl > fi 1 Ay' 1 or Ay 2 (4.9)

Y

Therefore, the natural choici for the integration points would be a square

uniform sampling grid with grid constant of the order of 10/2. However,

in practice, since the bean angle without radoue is knowm and Is not

expected to change drastically in the presence of the radnme, a better

estimate of the upper limits of Jul -* and {vJ - ""can be made. These will

be generally smaller chan unity as given in (4.8) and (4.9), which will

allow for larger sampling intervals Ax and Ay.

A reasonable estimate of the grid size 1, Y, in the x- and y-dimensions

can be made on the basis of the significance of fiel. values on plane Z3

such that the field has appreciable values for

X Y Y (

X and Y, together with Ax, dy, specify the nuober of grId points in the

x and y directions,

X __ (4.11)

which ant be the sae as the number of points in te u.&ad v directions

in the transtorm domain. Since the grid extent in the transforu dosin

EU and Vare already specifiod, tto eampl•ng intervA1 in the tranifors doin

would be
UV

Au. a (4.12)

which completes the picture.
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To sutmarize the mainpoints of this section, scarting from a

knowledge of the field on a set of Aenerally randm poizts on the '3

plane, an interpolation scheme is used to obtain the field values on

M x N uniformly spaced points in' the x and y directions (see (4.11))

with the 'grid size X x Y centered at the origin and sampling intervals

Ax, Ay in the x and y directions (see (4.8), (4.9)), respectively. Once

this is accomplished, an FFT algorithm is used to find the far field.

33



V. SPFCIAL CASES

The solution obZained foi the present radome problem is the most

general one. Let us now concentrate on a few special cases which bring

out interesting physical phenomena.

A. Nc radome.

In the absence of a radome (n = I), the rays in Figure 4 becomes

straight lines going from P0 to P3* and the rield at P39 according to

(3.51), becomes

- (Dr) a kO(r 1 2+r 2 3 ) (5.1)

Here the total divergence factor is

DF - O roO (5.2)
12), 2  r)01 + r 1 2 + r 2 3

which accounts for the spherical spread of the incident field.

B. Dielectric Slab Radome

When E 1 and 2 are parallel planar surfaces, the radome shell becomes

a dielectric slab (Figure 10). The field at i3 s given by (3.51) with

to 1 ' (5.3)'
Di r 1 1 1/2ýJr + -. . r .... I.. .+ r X1 /':

01 + r12 + 23)(r01 + $ r 12 +' 2 3

where

t2
" os1  - ,,1 -2, (,.,)

Cos 01 sea12 i 34

Details of the derivation of (5.3) are given in Appendix A. When

a1" 0 (normal incidence), (5.3) becomes
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F r 01. -5.5)

r " + (l/r)r 1 2 + r23 (55)

It is well-known that an interpretation of DF is the expansion ratio

def.!ned by

.Area at P31 1/2

where "Area" is that of a small ray tube centered around the ray shown in

Figure 10. As a nimerical example, let the thickness of the slab be

1 meter and both P0 and P3 be 1 &ter away from the slab (Figure 10).

In the absence of the radome (n 1), DF in (5.2) has the numeiical

value

(DF) , for all a . (5.7)
n'ml3 '1

When the slab radame is present, we plot DF in (5.3) as a function of

in for the two values of a- 0 and 45" (Figure 11). We note that for

n > 1, DF is always higher than the free-space value. In the limit

n .. , DF approaches the asymptotic value of 0.5 for all incident-

iangles, a6.

C. Spherical Shell Radome

Let the two surfaces E1 and E 2 be spheres oi radii R, and Rt2,

respectively (Figure 12). The thickness of the radose along the z-4xis

is d. We concentrate on the far field along the z-axis, i.e..,

i

2 '0 (5.8)23=

The field at P3 is given by (3.51b) where the divergatice Lactor is3!
reduced to
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REFRACTIVE INDEX

Figure 11. Variation of divergence f..ctoc wit .h refr *ctive index for
a slab radome.
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r< " , -+ ... R ]1

r +to+ldR2 d O I }il

(5.9)

We note that the first factor in (5.9) is identical to the DF in (5.5)

for a dielectric slab. radome. Thus, the ,ratio of the electric field at

P3 for the spherical shell end that for a dielectric slab is

131' 3ofor shell r 1d - R, -1
S 1 (-i) ++ 1. (5.10)"" 2~ for slab' _R12 U1 r

As a numerical example, consider the case in which Ei d Z2 are concentric

(R2 - R1 - d), and (R1 /d) - 2. We plot n as a function of (r 0 1 /d) for

a - 0.5 and n - 3 (Figure 13). Nor-; that 1 1 when r 1iR- R. (All

three points Al, A2 , P0 in Figure 10 become one point.) Then the

transmitted field through a concentric spherical shell and that through

a slab jacome the same.

A most interaesting phenomenon occurs when four parameters

(n, Rl, 2 ,r 0 1) satisfy the following relation

+ (u -. )r01 d (5.11)

Then DF in (5.9) becoes infinite? It means that the rays in the pentil

near the axis emerged from ,the radome are parallel so that they focus at

the far field point. According to the present geometrical optics theory,

under the condition in (5.11). the far field on the z-axis is-infinitely

large (a caustic point of the geometrical optics field). The actual field

is large but finite, and its value can be predicted only by using a more

refined theory than the present geometrical optics (such ae the Fourier

transform method in Section 4.B). This subject will be investigated

in Part I1 of this report.
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R2-R 1~d, RI 1Zd

1.0 Eb

0.8-- 0.5 E

0.6-

Figure 13. Transmitted field E transmitted through a spherical shell
normalized by £.b whch is that through a dielectric slab.
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VI. NUMERICAL RESULTS OF RADOME

For a finite-sized antenna inside a radome, ou- approach is to

represent the antenna by an array of point sources. In the present part

(Part I), we consider only a single point source, while the array will be

studied in Part II. As explained in (3.48), the incident field from

the point source is characterized by two pattern functions P and Q. For

the present computations, we assume that the point source is y-polarized.

Then it foliows that

'P(e,#) - VE(6) sin * (6.la)

Q(,80) - v(e0) cos * (6.lb)

where VE and VH(e) are, respectively, the E and H plane patterns, and they

assume the form

VE(0) - (cos 8)m VI(8) - (Cos n (6.2)

In particular for m - 1 and n - 0, the incident field is identical to

the far field of a y-directed electric dipole. In the E-plane ( 90),

the incident field in (3.48) becomes

-jkor

rX()r,[=e coso 6 (6.

The total transmitted field through the radome in the E-plane is

given by

7,•- 99) " esr [ P(O)] r (6.4)

In the following, we present results of P(e) for various radoues.
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We have studied a total of 8 radomes. They differ in the .oliowing

parameters, as listed in Table I.

:(i) Radome shape (sphere or paraboloid)

(ii) Relative dielectric constant e (from 2.5 to 5)

(iii) Radome thickness

(iv) Source positions

We discuss our numerical results below.

All the spherical radomes (A to D) have a radius of 20 X0 (Figure 14).

We plot the magnitude of pattern function P(e) defined in (6.4) as a functimn

of 6 in Figures 15 to 22. Generally, the effect of the radome is predicable,

namely, (1) IP(e)l decreases for taicker layers or/and higher cr; (ii) IP(e)I

decreases as the source moves laterally away from the z axis. The effect of

the radome curvature can be seen from Figure 15. When :ie source is located

at position 3 (center of the spherical shell), the field on the z-axis is

identical to that of a dielectric slab radome, as can be predicted from (5.10).

This, field becomes stronger than its countarpart through a slab for the source

position 4, and becomes weaker for the source position 2.

Two types of paraboloidal radomes are considered. In both types, the

inner surface is described by

2 50 1 _ x2 + y2) (6.5)x 8.12

The outer surface for the first type is

x ' 502 y2 ) , -. (6.6)

so that the thickness of the radore increases toward its base (Figure 23).

The outer surface for the second type is
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TABLE I

RADOME PARAMETERS

Ro Shape Thickness Patterns in
R~adoue hpe £r along z-axis Figures

A I /2 15, 16
2.5 0

Bsphere 0/4' 17, 18

C. 0/2 19, 20
5.0

D A. 21, 22

E Paraboloid I A.0/2 25, 26
.(Figure 23)

2.5
F Paraboloid II A0 /2 27, 28

G (Figure 24) x0/4 31, 32

H Paraboloid I 5.0 AO/2 33, 34
(Figure 23)

10 is free-space wavelength
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Figure 14. Spherical shell radome.
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Figure 15. E-plane radiation pattern through radome A (cr " 2.5, d - 2)
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Figure 17. I-plane radiation pattern through radoa* B (cr 2.3, d A0/4.



NO RADOME

0.95k

0.90

0.85

-20 -10 0. 10 20

POLAR ANGLE. 8 (DEG)

Figure 18. K-plane radiation pattern'through radow. 8 (c - 2.5, d 0 - )
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FIPIur* 20. K-plan. radiation pattern thtotagh radcme c (c~ r 5.0, d A 0 o/2).

49



-. ) /- -:

i.00Z ,

0.95 NO RADOME

0.90-

co • .•... ... ....0.85 - . ~ ;,' - -. 3_.
__0, 0.85 -.

0.80- /

* 4

0.70

-20 -10 0 !0 20

POLAR ANGLE, 8 (DEG)

Figure 21. K-plane radiation pattern through radome 0 (r 5.0, d X /4).
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'igur. 22. 1-pliane radiation pattern through radoms D (c r 5.0, d A * 4
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floure 23. Paroabloidal radomee R and 8 dosczribed bylqs. 6.5 and 6.6.
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2505 (x ) 2 (6.7)[~] - 0~5 -8.3211~~ 2 2

so that the radoile thickness is nearly unifors (Figure 2A). For the

incident field in (6.3), the E-plane patter IP(O)I has been calculated

for five source locations incide radcaes E to f.

It is particularly interesting to note that, for the field on the

z-axis, there is a striking difference between radome E and radome F,

namely, there is a dip in Figures 25 and 26 for radome 9, whereas there

is a peak in Figure 27 and 28 for radome F. This is so despite the fact

that, near the tip, radomes K and F are quite sialar as may be seen from

the expanded graph in Figure 29. The reason for such an anamAous behavior

is explained below. On the z-axis, the geometrical parameters of radomes

E and F are listed in Table II. P-1 avd R2 are the radii of curvature of

the inner and outer radome curfaces,

TABLE II

FIELD ON z-AXIS

I
Radome R1/)L0  R2/)O A O/A I(e) I

E .500 0.647
4 50

F 4.161 1.036

respectively. Note that, while R, is the sam for both radomes, R2 does

vary slightly (about 8%). According to (5.11), the critical value of R2

for' source position 1 (r 0 1 , s 50 Y0) is

Critical 1 R 3.7 A (6.8).

At this critical R2" the divergence factor DF and, therefore, field 3•
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Figure 25. E-plane radiation pattern through radoae E (� - 2.5, d -
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C77-7

50.50.

50.25 -OUTER SURFACE FOR
PARABOLOID OF FIG. 23

OUTER SURFACE FOR

PARABOLOID OF FIG. 24
50.00

(n)

z
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Figure 29. Expanded views of the paraboloids of Figures 23 and 24 around.

the tips.
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in (5.1), as predicated by the present geometrical optics theory becomes

infinite. In Figure 30, we plot the ratio of the field with or without

the radome for three values of r 0 1 . The solid curve in Figure 30 corr,.sponds

to the case discussed in Table II. For both radomes E and F, their values

of R2 are close to the critical value R2 - 3.7 X and consequently, the

fields on the z-axis are quite sensitive to f2. For radome E, the pattern

function IPI has the value 0.647 (dip), whereas that of radome F has the

value 1.035 (peak). It should be pointed out that the value 1.036 for radome

F is not a very lArge number. We do not have a caustic in the far field.

Hence, our calculations near the peaks in Figures 27 and 28 based on the

geometrical optics should be reasonably accurate.

Patterns for radomes G and H presented in Figure- 31 to 34 exhibit

the similar peak and dip phenomenon.
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!IM

DIVERGENCE FACTOR FOR A DIELECTRIC SLA RAD•IME

Figure 10 shows the slab radome in Cartesian coordinates. Since the

curvature of the radome is zero everywhere, the curvature matrix of the radome

iis zero. Considering the transmission at pil if Q is the curvature matrix of

tthe incident vavefront, the curvature matrix Q of the transuitted vavefront

at P1 is (3.41)

Q t -1 i i i t-(

i twhere 01 and 8 are given by (3.'40).

The factor [e Qi a./al may be evaluated using (3.41) and (3.34) to yield

?Cos CL~

nr 0 1  0

nr 01

[ t
1/cosa1 0

-1 1

Hence, (A.1) simlifeie to
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1

4 .A.2)

0 n01
where (3 cog at 1,2.

h ca/cos 1j2. NoW, (qlt q2) the principal curvatures of the

transmitted wavefront at P1 are (from 3.42)

ql "/(8nr 0 1) (A.3)

q2 1/(nr0 1 )

The divergence factor from P1 to P2 ir.., DF1 2 is, therefore, given by

DF (nr 01) 
(A.4)

12 (Bnr0ro r12) (nr0 + r12 )

NoW let us consider the transmission at P2 . The curvature matrix Qi of

the in•cidedt wavefront at P2 is given by (3.44) where B is the coordinate

transformation matrix from (Xj1 , y1 ) to (X 2,Y2). However, in the present

case B turns out to be a unit matrix and hence

2 - ,Q ;t (A.5)

Therefore, Qj; i ;i t ((()1

Qt )-12 
2

(Q1 ) can be .obtained from (A.2) as

Lnr 01 0
S~(A.6)
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Hence,

40

•1• ~(Onr0 + r12
[(8n"i 0(A.7)

L 001 +r 1 2

AMain, since the curvature matrix of Z2is •ro, the curvature matrix of

! the transmitted vavefront at P2 is given by (3.47)

where and are given by (3.47a). Equation (A.8) leads to the following

2 , ,

(nr 01 + r 12)

L n01- 121

Again,, before, we calculate the principal curvatures of the transmitted

wavefront at P2" Thus,

q1  8nr 01 + r 1 2

(A. 10)
n

q=(n01 + 12)
And, the divergence fgctor DFby in pa).o PE is given by

23rsso pasin fro tt ^

t(BnOt t U2)(nro0  + r1 2) ]/2

D123 - L( uro + r 2 + i3nr 23 )I(nr0 1 4 r1 2 4 +123) r(A.l)

S~69
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The Overall divergerce fkc tar tD? is

DF DF 1 2 x Dp2 3

((r", + -1 + r 3 (r01 , + rA.1r
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